Time-Dependent Gene Network Modelling by Sequential Monte Carlo
نویسندگان
چکیده
منابع مشابه
A Sequential Monte Carlo/Time-Dependent Density Functional Theory
A transição eletrônica n * do formaldeído em água é analisada usando-se um procedimento combinado e seqüencial de Monte Carlo (MC) clássico e mecânica quântica (MQ). MC é usado para gerar configurações do líquido para uso posterior em cálculos de MQ. Usando-se a representação espectral da teoria do funcional da densidade com uma base de funções gaussianas localizadas (TD-DFT/6-311++G(d,p)) cálc...
متن کاملMemory (and Time) Efficient Sequential Monte Carlo
Memory efficiency is an important issue in Sequential Monte Carlo (SMC) algorithms, arising for example in inference of high-dimensional latent variables via Rao-Blackwellized SMC algorithms, where the size of individual particles combined with the required number of particles can stress the main memory. Standard SMC methods have a memory requirement that scales linearly in the number of partic...
متن کاملSequential Monte Carlo Samplers
In this paper, we propose a methodology to sample sequentially from a sequence of probability distributions known up to a normalizing constant and defined on a common space. These probability distributions are approximated by a cloud of weighted random samples which are propagated over time using Sequential Monte Carlo methods. This methodology allows us to derive simple algorithms to make para...
متن کاملSequential Monte Carlo Bandits
In this paper we propose a flexible and efficient framework for handling multi-armed bandits, combining sequential Monte Carlo algorithms with hierarchical Bayesian modeling techniques. The framework naturally encompasses restless bandits, contextual bandits, and other bandit variants under a single inferential model. Despite the model’s generality, we propose efficient Monte Carlo algorithms t...
متن کاملVariational Sequential Monte Carlo
Many recent advances in large scale probabilistic inference rely on variational methods. The success of variational approaches depends on (i) formulating a flexible parametric family of distributions, and (ii) optimizing the parameters to find the member of this family that most closely approximates the exact posterior. In this paper we present a new approximating family of distributions, the v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE/ACM Transactions on Computational Biology and Bioinformatics
سال: 2016
ISSN: 1545-5963,1557-9964,2374-0043
DOI: 10.1109/tcbb.2015.2496301